Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
J Pers Med ; 12(3)2022 Mar 18.
Article in English | MEDLINE | ID: covidwho-1760723

ABSTRACT

The purpose of our study was to examine the occurrence of osteoporotic fractures (fxs) according to the level of physical activity (PA) among osteoporosis using the Korean National Health Insurance Service (NHIS) customized database. From NHIS data from 2009 to 2017, osteoporosis was selected as requested. PA was classified into 'high PA' (n = 58,620), 'moderate PA' (n = 58,620), and 'low PA' (n = 58,620) and were matched in a 1:1:1 ratio by gender, age, income within the household unit, and region of residence. A stratified Cox proportional hazard model was used to calculate hazard ratios (HRs) for each type of fx comparing PA groups. The 'low PA' group was the reference group. For vertebral fx, the adjusted HR (95% confidence intervals (CIs)) was 0.27 (0.26-0.28) for the 'high PA' group and 0.43 (0.42-0.44) for the 'moderate PA' group. For hip fx, the adjusted HR (95% CIs) was 0.37 (0.34-0.40) for the 'high PA' group and 0.51 (0.47-0.55) for the 'moderate PA' group. For distal radius fx, the adjusted HR (95% CIs) was 0.32 (0.30-0.33) for the 'high PA' group and 0.46 (0.45-0.48) for the 'moderate PA' group. The results of this study suggest that a higher intensity of PA is associated with a lower risk of osteoporotic fxs, including vertebral fx, hip fx, and distal radius fx.

2.
Adv Mater ; 34(4): e2105865, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1530085

ABSTRACT

Monitoring the body temperature with high accuracy provides a fast, facile, yet powerful route about the human body in a wide range of health information standards. Here, the first ever ultrasensitive and stretchable gold-doped silicon nanomembrane (Au-doped SiNM) epidermal temperature sensor array is introduced. The ultrasensitivity is achieved by shifting freeze-out region to intrinsic region in carrier density and modulation of fermi energy level of p-type SiNM through the development of a novel gold-doping strategy. The Au-doped SiNM is readily transferred onto an ultrathin polymer layer with a well-designed serpentine mesh structure, capable of being utilized as an epidermal temperature sensor array. Measurements in vivo and in vitro show temperature coefficient of resistance as high as -37270.72 ppm °C-1 , 22 times higher than existing metal-based temperature sensors with similar structures, and one of the highest thermal sensitivity among the inorganic material based temperature sensors. Applications in the continuous monitoring of body temperature and respiration rate during exercising are demonstrated with a successful capture of information. This work lays a foundation for monitoring body temperature, potentially useful for precision diagnosis (e.g., continuous monitoring body temperature in coronavirus disease 2019 cases) and management of disease relevance to body temperature in healthcare.


Subject(s)
Gold/chemistry , Nanostructures/chemistry , Silicon/chemistry , Biosensing Techniques , Finite Element Analysis , Humans , Molecular Dynamics Simulation , Polymers/chemistry , Skin , Skin Temperature , Wearable Electronic Devices , Wireless Technology
SELECTION OF CITATIONS
SEARCH DETAIL